A Poincaré–type Inequality on the Euclidean Unit Sphere

نویسندگان

  • AI-JUN LI
  • YINGYING LOU
  • YURONG JI
چکیده

We consider the second variation for the volume of convex bodies associated with the Lp Minkowski-Firey combination and obtain a Poincaré-type inequality on the Euclidean unit sphere Sn−1 . Mathematics subject classification (2010): 52A20.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterizations of Function Spaces on the Sphere Using Frames

In this paper we introduce a polynomial frame on the unit sphere Sd−1 of Rd, for which every distribution has a wavelet-type decomposition. More importantly, we prove that many function spaces on the sphere Sd−1, such as Lp, Hp and Besov spaces, can be characterized in terms of the coefficients in the wavelet decompositions, as in the usual Euclidean case Rd. We also study a related nonlinear m...

متن کامل

Super Poincaré and Nash-type inequalities for Subordinated Semigroups

We prove that if a super-Poincaré inequality is satisfied by an infinitesimal generator −A of a symmetric contraction semigroup on L2 and that is contracting on L1, then it implies a corresponding super-Poincaré inequality for −g(A) for any Bernstein function g. We also study the converse of this statement. We prove similar results for Nash-type inequalities. We apply our results to Euclidean, ...

متن کامل

Bonnesen-type inequalities for surfaces of constant curvature

A Bonnesen-type inequality is a sharp isoperimetric inequality that includes an error estimate in terms of inscribed and circumscribed regions. A kinematic technique is used to prove a Bonnesen-type inequality for the Euclidean sphere (having constant Gauss curvature κ > 0) and the hyperbolic plane (having constant Gauss curvature κ < 0). These generalized inequalities each converge to the clas...

متن کامل

Tangent Bundle of the Hypersurfaces in a Euclidean Space

Let $M$ be an orientable hypersurface in the Euclidean space $R^{2n}$ with induced metric $g$ and $TM$ be its tangent bundle. It is known that the tangent bundle $TM$ has induced metric $overline{g}$ as submanifold of the Euclidean space $R^{4n}$ which is not a natural metric in the sense that the submersion $pi :(TM,overline{g})rightarrow (M,g)$ is not the Riemannian submersion. In this paper...

متن کامل

Universal Bounds for Eigenvalues of Schrödinger Operator on Riemannian Manifolds

Abstract. In this paper we consider eigenvalues of Schrödinger operator with a weight on compact Riemannian manifolds with boundary (possibly empty) and prove a general inequality for them. By using this inequality, we study eigenvalues of Schrödinger operator with a weight on compact domains in a unit sphere, a complex projective space and a minimal submanifold in a Euclidean space. We also st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016